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N E U R O S C I E N C E

RasGRP1 is a causal factor in the development  
of l-DOPA–induced dyskinesia in Parkinson’s disease
Mehdi Eshraghi1*, Uri Nimrod Ramírez-Jarquín1*, Neelam Shahani1*, Tommaso Nuzzo2,3, 
Arianna De Rosa2,3, Supriya Swarnkar1, Nicole Galli1, Oscar Rivera1, George Tsaprailis4, 
Catherina Scharager-Tapia4, Gogce Crynen5, Qin Li6,7, Marie-Laure Thiolat8,9, Erwan Bezard6,7,8,9, 
Alessandro Usiello2,3†, Srinivasa Subramaniam1†

The therapeutic effects of l-3,4-dihydroxyphenylalanine (l-DOPA) in patients with Parkinson’s disease (PD) severely 
diminishes with the onset of abnormal involuntary movement, l-DOPA–induced dyskinesia (LID). However, the 
molecular mechanisms that promote LID remain unclear. Here, we demonstrated that RasGRP1 [(guanine 
nucleotide exchange factor (GEF)] controls the development of LID. l-DOPA treatment rapidly up-regulated 
RasGRP1 in the striatum of mouse and macaque model of PD. The lack of RasGRP1 in mice (RasGRP1−/−) dramati-
cally diminished LID without interfering with the therapeutic effects of  l-DOPA. Besides acting as a GEF for Ras 
homolog enriched in the brain (Rheb), the activator of the mammalian target of rapamycin kinase (mTOR), 
RasGRP1 promotes l-DOPA–induced extracellular signal-regulated kinase (ERK) and the mTOR signaling in the 
striatum. High-resolution tandem mass spectrometry analysis revealed multiple RasGRP1 downstream targets 
linked to LID vulnerability. Collectively, the study demonstrated that RasGRP1 is a critical striatal regulator of LID.

INTRODUCTION
The loss of substantia nigral projections neurons, which results in 
decreased dopamine levels in the dorsal striatum, is the primary cause 
of Parkinson’s disease (PD). As a precursor for dopamine, l-DOPA 
(l-3,4-dihydroxyphenylalanine or levodopa) effectively alleviates 
motor symptoms in PD; however, its therapeutic benefits are mark-
edly limited by its debilitating dyskinetic side effects, the l-DOPA–
induced dyskinesia (LID). Previous studies have shown that LID is 
mediated by the abnormal activation of dopamine 1 (D1)–dependent 
cyclic adenosine 3′,5′-monophosphate (cAMP)/protein kinase A (PKA), 
extracellular signal–regulated kinase (ERK), and mammalian target 
of rapamycin kinase complex 1 (mTORC1) signaling in the dorsal 
striatum (1, 2). The inhibitors of these signaling pathways may pre-
vent LID without affecting the beneficial motor effects of l-DOPA 
(2). Ras–guanine nucleotide–releasing factor 1 (RasGRF1), which 
is a guanine nucleotide exchange factor (GEF) for Ras guanosine 
triphosphatase (GTPase), is abundant in the cortex, hippocampus, and 
striatum and is known to activate ERK in the striatum and regulate 
LID (3). However, the striatal regulators that modulate both ERK and 
mTORC1 signaling in LID remain unknown. Previously, we found that 
Rhes, a striatal-enriched GTPase/SUMO-E3–like protein, binds and ac-
tivates mTORC1 signaling and promotes LID (4), in agreement with 
a recent report (5). RasGRP1, a GEF for H-Ras that signals ERK, is 
highly expressed in hematopoietic cells, is regulated by calcium and 

diacylglycerol, is known to play a role in T and B cell proliferation, 
and has been implicated in leukemia and lupus (6–8). Besides blood 
cells, RasGRP1 is enriched in specific brain regions that control motor 
and cognitive functions, such as the striatum, but its role in neuronal 
functions remains less clear (9, 10). Earlier, we found that RasGRP1 can 
also act as a GEF for Rhes and promote amphetamine-induced hy-
peractivity via the striatal protein-protein complex known as “Rhe-
sactome” (10). Here, we report a causal role for RasGRP1 in LID. We 
demonstrate that l-DOPA–increased RasGRP1 level is causally linked to 
the development of abnormal involuntary movements (AIMs) asso-
ciated with robust activation of ERK and mTOR pathways in the stria-
tum. Using high-end quantitative proteomic analysis of parkinsonian 
wild-type (WT) and RasGRP1−/− mice treated with l-DOPA, we have 
identified multiple striatal targets downstream to RasGRP1 activation 
that may play critical roles in LID.

RESULTS
RasGRP1 role during LID in a mouse model of PD
We hypothesized that RasGRP1 may be an upstream regulator of 
LID due to the following reasons: (i) l-DOPA treatment of mice with 
unilateral 6-hydroxydopamine (6-OHDA) lesions of the nigrostria-
tal pathway augmented striatal ERK and mTOR signaling (1, 2, 11); 
(ii) Rhes, a striatal-enriched protein that activates mTOR, is involved 
in LID (4); (iii) RasGRP1 regulated the synaptic localization of Rhes; 
and (iv) RasGRP1 and Rhes coexpression strongly activated both 
ERK and mTORC1 signaling in a striatal cell culture (10). To test 
our hypothesis, we subjected WT and RasGRP1−/− [RasGRP1 knock-
out (KO)] mice to the well-established 6-OHDA lesion model of LID, 
as described in our earlier work (4). Figure 1A shows the timeline of 
the 6-OHDA lesion and LID analysis. We observed 6-OHDA–induced 
PD-like symptoms in the drag test, rotarod, and turning test, which 
were similar between WT and RasGRP1 KO mice (Fig. 1B). The 
open-field test did not show obvious differences (Fig. 1B). Daily 
treatment of lesioned mice with l-DOPA (5 mg/kg) (12) induced 
significantly less AIMs in RasGRP1 KO mice compared to WT controls 
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at every time point (Fig. 1C). All components of dyskinesia ap-
peared to be equally dampened in RasGRP1 KO mice (Fig. 1D). 
The time course of dyskinesia was similar between WT and RasGRP1 
KO mice, suggesting that RasGRP1 did not alter l-DOPA turnover 
(Fig. 1E). These observations suggest that RasGRP1 is a critical regu-
lator of LID.

RasGRP1 deletion and anti-Parkinson’s effects of l-DOPA
Next, we investigated whether RasGRP1 deletion had any influence 
on the anti-Parkinson’s effect of l-DOPA. We found that adminis-
tration of l-DOPA decreased Parkinson’s-like symptoms as mea-
sured by the drag test (on days 3 and 16; Fig. 1F) and the turning test 
(day 12; Fig. 1G) in both WT and RasGRP1 KO–lesioned mice. 
As expected, sham injections produced no defects in the drag test (fig. S1). 
The open-field or rotarod test were also used as functional in vivo 
readouts, but we did not see any difference in total distance traveled or 
latency to fall between the genotypes and sham treatments (figs. S2 
and S3). Thus, RasGRP1 promoted the adverse effects of l-DOPA 
but did not interfere with its therapeutic motor effects. Moreover, 
RasGRP1 KO mice displayed no significant changes in basal motor 
behavior or coordination (figs. S2 and S3) or amphetamine-induced 
motor activity compared to control mice (10).

Effect of RasGRP1 on striatal signaling during LID
Previous works had showed that dopamine 1 (D1) and dopamine 2 
(D2) receptors of medium spiny neurons (MSNs) in the striatum 
may play different roles in LID. For example, Santini et al. (2) showed 
that l-DOPA induces ERK and mTOR signaling in D1 MSNs. Con-
sistent with these data, the stimulation of mTOR signaling by l-DOPA 
has been shown to be abolished by D1 antagonists and unaffected 
by D2 antagonists (2). Similarly, we found that Rhes, which is pre-
dominantly expressed both in D1 and D2 MSNs, promoted mTOR 
signaling in LID (4). As RasGRP1 KO mice showed diminished dys-
kinesia, we investigated ERK and mTOR, along with other signaling 
molecules in the striatal tissue of WT and RasGRP1 KO mice. First, 
we confirmed that the 6-OHDA lesion procedure produced similar 
degree of denervation in both WT and RasGRP1 KO mice [assessed 
by significant loss of tyrosine hydroxylase (TH) protein levels; 
Fig. 2, A and B]. Intriguingly, we found that RasGRP1 levels were 
up-regulated after l-DOPA injection (Fig. 2, A and B). This increase 
was dependent on l-DOPA administration, as we found no striatal 
increase of RasGRP1 in 6-OHDA lesion vehicle control (fig. S4). 
We observed an up-regulation of mTORC1 activity as measured by 
the levels of phosphorylation of ribosomal protein S6 kinase (S6K) 
at T389, phosphorylation of S6 at S235/236, and phosphorylation 
of eukaryotic translation initiation factor 4E (eIF4E)–binding pro-
tein 1 (4EBP1; T37/46) at a site that primes p4EBP1 for subsequent 
activity phosphorylation at S65 in l-DOPA–treated 6-OHDA–lesioned 
WT mice but not in the striatum of RasGRP1 KO mice (Fig. 2, A 
and B). We were unable to detect p4EBP1 S65, as the antibodies for 
this site did not work for brain lysate. We also found that mTORC2 
activity, as measured by phosphorylation of Akt (S473), was up-
regulated in 6-OHDA–lesioned WT mice but not in the striatum of 
RasGRP1 KO mice treated with l-DOPA (Fig. 2, A and B). Previous 
findings have shown that phosphorylated Akt (S473) was up-regulated 
in the putamen of a monkey model of LID (13). In addition, D1/
cAMP/PKA-dependent pGlur1 S845 levels along with pERK (T202/
Y204), and the phosphatidylinositol 3-kinase (PI3K) target [pAkt (T308)], 
were also highly up-regulated in the striatum of WT but not 

RasGRP1 KO mice after LID (Fig. 2, A and B). On the other hand, 
we found that Rheb and Rhes levels were significantly down-regulated 
in the lesion side of RasGRP1 KO mice (Fig. 2, A and B), consistent 
with our earlier report (10), suggesting that RasGRP1 may physio-
logically stabilize these proteins in the striatum. RasGRP1 up-regulation 
was also observed in the striatum of rat under LID (14, 15), but whether 
it is a cause or consequence of dyskinesia was unknown. Together, 
these biochemical studies indicated that (i) striatal RasGRP1 is up-
regulated in a l-DOPA–dependent manner and is causally linked to 
the development of LID; (ii) RasGRP1 deletion prevents the up-
regulation of l-DOPA–induced cAMP/PKA, mTOR, ERK, and Akt 
signaling in the striatum; and (iii) Rhes and Rheb, activators of mTOR, 
are down-regulated in the striatum of RasGRP1 KO mice compared 
to WT mice during LID.

Up-regulation of RasGRP1 in D1 MSNs by l-DOPA 
in 6-OHDA–lesioned striatum
We next wondered whether RasGRP1 up-regulation occurs within 
D1 MSNs. We made serial brain sections from the WT mice that were 
6-OHDA lesioned and treated with l-DOPA. The parallel brain sections 
were immunostained for RasGRP1/D1R/4′,6-diamidino-2-phenylindole 
(DAPI) or TH using immunohistochemistry (IHC) protocol. As 
shown in the Fig. 3A, we found RasGRP1 up-regulation in the le-
sioned side of the dorsal striatum, coincided with TH loss (Fig. 3B). 
In 6-OHDA–lesioned mice, RasGRP1 up-regulation is predominantly 
seen in the dorsolateral region of the striatum (Asterix; Fig. 3A). 
Unexpectedly, we also observed enhanced signal for RasGRP1 in 
the ipsilateral cortex when compared to nonlesioned contralateral 
hemisphere, indicating that striatal 6-OHDA lesion can also 
promote RasGRP1 expression in the cortex (white arrow; Fig. 3A). 
Magnified and orthogonal confocal images show RasGRP1 basal 
expression (Fig. 3C) and its up-regulation in the dorsal striatum 
within the D1R+ MSNs of lesioned mice (Fig. 3, D and E), consistent 
with Western blot analysis (Fig. 2, A and B). Earlier, we found 
biochemically that RasGRP1 is predominantly enriched in the cy-
toplasmic fractions compared to synaptic fractions in the striatum 
(10). Consistent with this data, the IHC data reveal that RasGRP1 
is predominantly perinuclear and colocalizes partially with D1R stain-
ing (arrow; Fig. 3E). Thus, RasGRP1 is clearly up-regulated in the dor-
sal striatum of 6-OHDA–lesioned animals treated with l-DOPA 
and colocalized with D1R+ neurons located on the dorsolateral part 
of striatum.

RasGRP1 and mTOR signaling crosstalk
Next, we examined the potential mechanisms by which RasGRP1 
up-regulation in LID promoted mTOR and ERK signaling. To this 
aim, first, we transiently overexpressed RasGRP1 in human embryonic 
kidney–293 (HEK293) cells, which were transfected with a control 
vector (His) or His-RasGRP1 complementary DNA (cDNA). Then, 
we incubated the transfected cells in a serum-free F12 medium sup-
plemented with full amino acids (AA+) or F12 medium that lacked 
l-leucine (AA−), which is a potent inducer of mTORC1 (16). After 
2 hours, cells in AA− medium were restimulated by addition of 
l-leucine (3 mM). In AA+ conditions, RasGRP1-expressing cells, 
compared to control cells, had two to three times as much mTORC1 
activity as measured by the phosphorylated levels of S6K at T389 
(pS6K-T389) and 4EBP1 at S65 (p4EBP1-S65; Fig. 4, A and B). In 
AA− medium, mTORC1 activity was 50% lower than AA+ medium 
in RasGRP1-expressing cells yet was higher than the control cells. 
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Fig. 1. RasGRP1 deletion diminishes LID. (A) LID scheme. (B) Drag test, rotarod, turning test, and open-field test for the indicated genotypes for sham or 6-OHDA–
lesioned mice. Total AIM scores (C) or AIMs per session (D) (axial, limb, or locomotion) for the indicated sham or 6-OHDA–lesioned WT and RasGRP1 KO (RasGRP1−/−) mice, 
vehicle, or l-DOPA injected. (E) Total AIMs score per observed period (days 1 to 17) after injection of l-DOPA. (F) Drag test on days 3 and 16 after l-DOPA treatment and 
(G) turning test on day 12 after l-DOPA injection. Error bars represent means ± SEM (n = 4 to 25). *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 by one-way ANOVA 
followed by Bonferroni post hoc test and repeated measures two-way ANOVA followed by Bonferroni post hoc test.
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Fig. 2. RasGRP1 mediates l-DOPA–induced mTOR, ERK, and GluR1 signaling in the striatum. (A) Western blot analysis of intact and 6-OHDA–lesioned striatum of WT 
and RasGRP1 KO mice after l-DOPA treatment. (B) Quantification of the indicated proteins in WT or RasGRP1 KO intact side or lesioned side of the striatum. Protein levels 
were normalized to actin. Phosphorylated proteins were normalized against the total protein levels. Error bars represent means ± SEM (n = 18). *P < 0.05, **P < 0.01, 
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Upon restimulation with l-leucine for 15 min, mTORC1 activity 
rapidly returned to levels comparable with those in AA+ condi-
tions. This indicated that RasGRP1 promoted amino acid–mediated 
mTORC1 activity. RasGRP1 expression increased the constitutive 
phosphorylation of ERK, which is not sensitive to amino acids (Fig. 4C).

Next, we tested the effects of ERK inhibition on RasGRP1-mediated 
mTORC1 signaling. While U0126, a potent inhibitor of mitogen-
activated protein kinase (MEK) abrogated ERK signaling, it had 
negligible effects on RasGRP1-induced pS6K (T389) and p4EBP1 

(S65; Fig. 4C). However, rapamycin, a mTORC1 inhibitor, which 
did not alter RasGRP1-induced ERK signaling, markedly attenuated 
RasGRP1-induced amino acid–mTORC1 signaling (Fig. 4D). Like 
rapamycin, the PI3K inhibitor wortmannin abolished RasGRP1-
induced mTORC1 signaling (Fig. 4E). Collectively, rapamycin and 
wortmannin, but not U0126, blocked RasGRP1-induced mTORC1 
activation (Fig. 4F). The depletion of endogenous RasGRP1 using 
short hairpin RNA (shRNA) in HEK293 cells also diminished 
mTORC1 signaling (fig. S5). Together, these data suggested that 
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RasGRP1 physiologically activates mTORC1 signaling by regulating 
catalytically important residues on pS6K and p4EBP1 via a PI3K-
sensitive pathway. In addition, using a pharmacological approach, 
we found no significant cross-talk between ERK and mTORC1 sig-
naling induced by RasGRP1.

Interaction of RasGRP1 with Rheb in striatum and in vitro
According to the above results, we predicted that RasGRP1 would 
activate ERK and mTORC1 signaling in two independent and parallel 
pathways. Previous studies showed that RasGRP1 can activate ERK 
via GTPase H-Ras (8, 9), but we wondered how RasGRP1 activates 
amino acid–induced mTORC1. As Rheb, which directly binds and 
activates mTOR, mediates amino acid–induced mTORC1 activity 
(17), we hypothesized that RasGRP1 may promote mTORC1 activity 
by interacting with Rheb in the brain. To test this hypothesis, we 
coimmunoprecipitated Rheb and RasGRP1 from the brain’s striatum 
using Rheb antibody. As predicted, we observed that Rheb effectively 
coimmunoprecipitated with RasGRP1 and mTOR, a known Rheb 
interactor (Fig 4G). Rheb also coprecipitated with huntingtin (Htt), 
which was consistent with our previous report (18). However, the 
existing RasGRP1 antibody appeared inefficient for immuno-
precipitation, as it only moderately enriched RasGRP1 (Fig. 4G). 
Next, we investigated whether RasGRP1 interacts directly with Rheb 
in vitro. Coincubation of bacterially purified glutathione S-transferase 
(GST)–FL-RasGRP1 and Rheb proteins revealed their robust inter-
action (Fig. 4H). As shown in Fig. 4I, the interaction appeared 
strong with FL-RasGRP1 compared to the RasGRP1 GEF domain 
(1 to 450 amino acids) (19). Next, we tested whether RasGRP1 can 
act as a GEF for Rheb by using a widely used in vitro fluorescent-
based mant–guanosine 5′-triphosphate (GTP) assay (20). Figure 4 
(J and K) shows the purified GST-RasGRP1 in Escherichia coli and 
was cleaved with PreScission Protease to produce untagged FL-
RasGRP1 that is confirmed by Western blot. In mant-GTP loading 
assay, we found that RasGRP1 showed a robust and concentration-
dependent GEF activity toward Rheb (Fig. 4L). At both (0.4 and 2 M) 
concentration of RasGRP1, the steady-state exchange activity was 
reached quite rapidly, and there was a rapid exchange at the 2 M 
compared to 0.4 M RasGRP1 concentration (Fig. 4L). Therefore, 
we conclude that the RasGRP1 binds immediately and strongly to 
the Rheb and does not dissociate. Note that the positive control, Dbs 
[diffuse B-cell lymphoma’s (Dbl’s) big sister], which acts as a GEF 
toward cdc42, showed steady increase in exchange activity (Fig. 4M), 
whereas Dbs that is not a GEF for rac (21) showed no activity (Fig. 4N), 
as expected. Thus, we showed that RasGRP1 could directly interact 
with Rheb in the striatum and could act as its GEF in vitro. Collectively, 
these data suggested that RasGRP1 may promote mTORC1 activity in 
the brain via Rheb GTPase.

Quantitative striatal proteomic analysis  
of WT and RasGRP1−/− mice
To understand the mechanisms by which RasGRP1 might elicit LID, 
we undertook quantitative and comparative proteomics profiling of 
WT and RasGRP1 mice KO mice striatum with high-resolution mass 
spectrometry (MS) coupled to liquid chromatography–tandem 
MS (LC-MS/MS) based on tandem mass tags (TMTs) designed for 
phosphoprotein enrichment. We isolated the striatum (intact and 
6-OHDA lesion side) 20 min after l-DOPA administration from 
three WT mice that showed severe dyskinesia and three RasGRP1 
KO mice that showed no dyskinesia in response to l-DOPA in a 

PD model (Fig. 5A). We labeled each striatal lysate with TMT 
labeled six-plex reagents (Thermo Fisher Scientific) as indicated 
in Table 1.
Loading bias was minimal and was removed by normalizing it with 
the total peptide amount. We quantified 849 phosphorylated epitopes 
in all groups. Analysis of variance (ANOVA) results indicated 70 
phosphopeptides were significantly regulated between the comparison 
groups [B/A, C/A, and D/A; false discovery rate (FDR) = 0.10], and 
then Tukey’s honest significant difference (HSD) was used as post 
hoc test to find out which pairs were different from each other 
( = 0.05; Fig. 5B and data files S1 and S2). Similarly, ANOVA 
results indicated that the levels of 74 proteins of 1121 identified 
nonphospho-enriched proteins (total) were significantly regulated 
between the comparison groups (B/A, C/A, and D/A; FDR = 0.10), 
and then Tukey’s HSD was used as post hoc test to find out which 
pairs were different from each other ( = 0.05; Fig. 5B and data 
files S3 to S5). Ingenuity Pathway Analysis revealed that signaling 
pathways related to glutamate-dependent acid resistance, -adrenergic 
signaling, sirtuin signaling, ephrin signaling, glutamate degradation, 
Huntington disease pathways, mitochondrial dysfunction targets, 
protein kinase A signaling, and others were highly significantly reg-
ulated in WT but not in RasGRP1 KO mice striatum (Fig. 5C and 
data file S6).

We looked at some of the examples of phosphorylated epitopes 
(Fig. 5D and data files S1 and S2). Overall, the significantly (dark 
circles) affected phosphopeptides in the WT 6-OHDA–lesioned side 
show a diminished trend in RasGRP1 KO (Fig. 5D), indicating that 
RasGRP1 may regulate the phosphorylation status of these proteins 
in the striatum. For example, as expected, the phosphorylation status 
of TH at S472 is similar in the intact side but is down-regulated in 
the lesioned side of both RasGRP1 KO and WT (Fig. 5D, indicated 
in red). However, the phosphorylation at S261 of catechol-O-methyl 
transferase (Comt), an enzyme that catalyzes the degradation 
of catecholamines (including the neurotransmitters dopamine, 
epinephrine, and norepinephrine) is diminished more in RasGRP1 
KO compared to WT mice (Fig. 5D) (22). Inhibitors of Comt can 
diminish dyskinesia in normal monkeys, and overexpression of Comt 
in mice can potentiate LID (23, 24). Similarly, phosphodiesterase 
(Pde), such as Pde10a, which is implicated in LID (25, 26), showed 
a diminished phosphorylation at S777 in RasGRP1 KO (Fig. 5D). 
Pde1b showed phosphorylation at three difference sites—such as S508, 
S465, and S18—but show significantly diminished phosphorylation 
only at S465 and S18 (Fig. 5D) in RasGRP1 KO striatum compared 
to WT (27). Notably, Tsc2, a GTPase activating protein for Rheb 
(28), showed a consistent reduction in the phosphorylation status at 
S1397 and S1367 in RasGRP1 KO striatum compared to WT 
(Fig. 5D). These data indicate that RasGRP1 physiologically regu-
lates the phosphorylation of multiple targets in the striatum. However, 

Table 1. Sample groups and TMT labels.  

WT-intact 
(A)

WT-lesion 
(B)

RasGRP1 KO 
intact (C)

RasGRP1 
KO lesion 

(D)

Plex 1 label 126 (Kit 1) 127 (Kit 1) 128 (Kit 1) 129 (Kit 1)

Plex 2 label 128 (Kit 2) 129 (Kit 2) 130 (Kit 2) 131 (Kit 2)

Plex 3 label 126 (Kit 2) 127(Kit 2) 130 (Kit 1) 131 (Kit 1)
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Protein kinase A signaling 3.5 CAMK2G, GNAI2, GNAQ, ITPR1, PDE2A, PYGB, TH
Synaptic long-term depression 3.44 GAD1, GNAI2, GNAQ, ITPR1, PPP2R1A
Breast cancer regulation by Stathmin1 3.3 CAMK2G, GNAI2, GNAQ, ITPR1, PPP2R1A
Role of NFAT in cardiac hypertrophy 3.17 CAMK2G, GNAI2, GNAQ, ITPR1, SLC8A2
Signaling by Rho Family GTPases 2.92 BAIAP2, GFAP, GNAI2, GNAQ, VIM
Corticotropin-releasing hormone signaling 2.89 GAD1, GNAI2, GNAQ, ITPR1
Relaxin signaling 2.84 GAD1, GNAI2, GNAQ, PDE2A
Phagosome maturation 2.84 ATP6V1G1, CTSD, PRDX2, PRDX6
Melatonin signaling 2.78 CAMK2G, GNAI2, GNAQ
GPCR-mediated enteroendocrine signaling 2.76 GNAI2, GNAQ, ITPR1
Dopamine-DARPP32 feedback in cAMP signal 2.71 GNAI2, GNAQ, ITPR1, PPP2R1A
Chemokine signaling 2.65 CAMK2G, GNAI2, GNAQ
GNRH signaling 2.61 CAMK2G, GNAI2, GNAQ, ITPR1
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Fig. 5. Quantitative proteomics of the striatum of WT and RasGRP1 KO dyskinesia animals. (A) Scheme of isolation of striatal tissue from the 6-OHDA–lesioned WT 
and RasGRP1 KO (RasGRP1−/−) after l-DOPA treatment, followed by LC-MS/MS. (B) Total number of quantifiable proteins that are enriched for phosphorylated epitopes 
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intact groups. Significant targets and nonsignificant targets were indicated in dark and light gray circles, respectively (n = 3 mice per group).
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the role or implications of these various phosphorylated targets in 
LID remains to be elucidated. A full list of phosphorylated targets 
can be found in data files S1 and S2.

Similarly, among total proteins, for example, Pde2a was higher 
in WT than RasGRP1 KO mice striatum (Fig. 5E, indicated in blue). 
Gfap up-regulation is found in 6-OHDA rodent model of PD (29). 
Similarly, we found a marked up-regulation of Gfap in the lesion side 
of both WT and RasGRP1 KO (Fig. 5E), although it was slightly lower 
in the RasGRP1 KO striatum (Fig. 5E). Gad1 and Gad2, also known 
as Gad67 and Gad65, respectively, which catalyzes the production 
of -aminobutyric acid, are up-regulated in WT but not in RasGRP1 
KO striatum (Fig. 5E). A previous work showed that the loss of 
Gad67 has diminished LID in mouse models of PD (30), indicating 
that Gad67 might be a target of RasGRP1 in the striatum. Next, we 
validated some of the altered target proteins in RasGRP1 KO striatum. 
We used Western blotting with validated antibodies to confirm the 
up-regulation of Gad1, Gad2, Gfap, and Pde2a observed in quanti-
tative LC-MS/MS in the lesioned area of WT mice but not in 
RasGRP1 KO striatum (Fig. 6, A to C). However, not all proteins 
were down-regulated in RasGRP1 KO mice in the proteomic analysis. 
For example, complexin-1, visinin-like protein, glutamate dehydro-
genase 1, guanine nucleotide–binding protein G(q) subunit , and 
lactate dehydrogenase were up-regulated in RasGRP1 KO mice but 
not in WT mice (data file S5). Collectively, LC-MS/MS data indicated 
that RasGRP1 acts upstream in response to l-DOPA and regulates a 
specific but diverse set of proteins to promote LID. This notion is 
strengthened by the fact that some of these proteins have been im-
plicated in LID in independent studies (23, 25, 26).

Up-regulation of RASGRP1 mRNA and protein levels in 
putamen of dyskinetic MPTP-lesioned nonhuman primate 
model of PD
The data described above established that RasGRP1 up-regulation 
is causally linked to the generation of LID in a mouse model of 
PD. Here, we investigated whether RASGRP1 and its downstream 
targets’ [glutamic acid decarboxylase 1/2 (GAD1/2), glial fibrillary 
acidic protein (GFAP), and PDE2A] protein levels are altered in the 
medial frontal gyrus (MFG) and putamen of a dyskinetic 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)–lesioned nonhuman 
primate model of PD (Fig. 6D). As shown in Fig. 6E, we found a 
marked loss of TH protein levels in the putamen of monkeys treated 
with MPTP and MPTP + l-DOPA, indicative of severe nigrostriatal 
degeneration in these animals. Western blotting experiments revealed 
no significant alterations of RASGRP1 levels within MFG in both 
parkinsonian and dyskinetic macaques compared to control group 
(Fig. 6F). Similarly, expression levels of GAD1/2, GFAP, and PDE2A 
were comparable in the MFG among experimental groups (Fig. 6F). 
Likewise, Western blot data showed that MPTP treatment alone did 
not significantly perturb the expression of RASGRP1 in the putamen 
of nonhuman primates (Fig. 6G). In contrast, we observed a significant 
increase in striatal RASGRP1 protein and mRNA content selectively 
in monkeys treated with MPTP + l-DOPA compared to control group 
(Fig. 6, G and H). Moreover, although statistical analysis failed to find 
significant difference, we found a clear trend of increase in both GAD2 
and GFAP protein expression in the putamen of dyskinetic macaques 
(Mann-Whitney test, GAD2: control versus MPTP + l-DOPA, P = 0.0635; 
GFAP: control versus MPTP + l-DOPA, P = 0.1111; Fig. 6G) but not 
in parkinsonian monkeys (Fig. 6G). Yet, we found comparable levels 
of both GAD1 and PDE2A proteins in the putamen of MPTP-treated 

macaques with or without chronic l-DOPA treatment compared to 
the control group (Fig. 6G). Thus, consistent with mice observations 
(reported above) and previous studies in rats treated with l-DOPA 
(14, 15), we showed a significant RASGRP1 up-regulation under LID 
conditions also in nonhuman primate model of PD. Since monkey 
model for PD can mimic more signs and symptoms of human PD, 
our finding strengthens the translational relevance of RasGRP1 in 
PD treatment.

DISCUSSION
After about a decade of l-DOPA treatment, more than 95% of 
patients with PD develop dyskinesia. Only the N-methyl-d-aspartate 
receptor weak antagonist amantadine provides some clinical benefit 
but with limitations and nonmotor side effects (31); therefore, there 
is an immediate need to identify novel therapeutic targets for LID. 
In the present study, we demonstrate that RasGRP1 is a potential 
therapeutic target for LID, as our data indicated that (i) RasGRP1 is 
induced upon l-DOPA administration in parkinsonian mice and 
also nonhuman primates, (ii) RasGRP1 is causally linked to LID in 
mice, and (iii) RasGRP1 mediates l-DOPA–induced activation of 
ERK and mTOR pathways, known modulators of LID in striatum. 
RasGRP1 may represent a better target than mTOR and ERK, 
although mTOR inhibitors, such as rapamycin, or ERK inhibitors, 
such as U0126, have been shown to prevent LID in mouse models 
(2, 5, 32), these drugs are strong inhibitors of protein synthesis and 
have associated toxicity. In addition, they broadly inhibit targets in 
unwanted regions. Increasing number of data, including ours, indi-
cates that RasGRP1 is up-regulated in the striatum of rat (14, 15), 
mouse, and monkey models of LID (Figs. 2, 3, and 6). However, the 
mechanism underpinning increased RasGRP1 expression under LID 
conditions remains unclear. Although dysfunctional D1R activation 
is well known to contribute to the generation of LID (33), its specific 
role in RasGRP1 modulation is unknown. We predict that RasGRP1 
will be up-regulated in the dorsal striatum within D1R+ MSN in 
response to dopaminergic drugs under receptor super sensitivity, 
consistent with present IHC data (Fig. 3). The exact type of recep-
tors and selective signal transduction pathway that may participate 
in inducing striatal RasGRP1 levels during LID is critical to further 
target the molecule for therapeutic purpose.

What are the mechanisms by which the up-regulated RasGRP1 
induces ERK and mTOR signaling in the striatum during LID? Cell 
culture data demonstrated that there was no cross-talk between 
RasGRP1-induced ERK and mTORC1 signaling and suggest a role 
for PI3K in these interactions. We propose a model to show how 
RasGRP1 might activate both ERK and mTOR pathways during LID 
(Fig. 6I). We predicted that RasGRP1 would form complexes with 
more than one small GTPase in the dorsal striatum during LID. For 
example, up-regulated RasGRP1 can form two kinds of GEF complex, 
a RasGRP1-Ras complex and a RasGRP1-Rheb complex, to activate 
ERK and mTOR signaling, respectively, which in turn alter global 
protein translation and posttranslational modifications in the striatum 
(Fig. 6I). This notion is consistent with the actions of other GEFs 
that activate multiple small GTPases (34, 35). We predict that up-
regulated RasGRP1 would act postsynaptically within MSNs like a 
“master GEF” for H-Ras, Rhes, and Rheb, and consistent with this 
notion, we found that RasGRP1 acts as GEF for Rheb. These multi-
ple “GEF-GTPasome” complexes may afford the flexibility such as 
protein modifications needed to develop the AIMs observed in 
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LID. Consistent with this, proteomics study revealed that RasGRP1 
affect phosphorylation status and total striatal protein compositions 
that may elicit strong cellular, molecular, and anatomical alterations 
via regulating protein synthesis and/or posttranslational modifica-
tions. These biological effects may promote sustained alterations in 
striatal signaling that could trigger debilitating LID.

In addition to diminished ERK and mTOR signaling in RasGRP1 
KO mice, we also found that pGluR1 (S845), a target of PKA, was 
significantly diminished. PKA pathway is reported to be critically 
involved in the development of LID (36). Thus, RasGRP1 can also 
affect D1/cAMP/PKA-dependent changes in pGluR1 (S845) levels 
under LID conditions presumably via Ras-cAMP signaling described 
in yeast (37). Although our work indicates a main influence of 
RasGRP1 in modulating striatal postsynaptic events occurring in MSNs 
under PD conditions, we cannot rule out that this protein could also 
affect indirectly via presynaptic regulation of dopamine homeostasis. 
Future studies are warranted to investigate this critical issue.

Note that RasGRP1 KO mice are fertile and have no significant 
changes in the basal motor activity (figs. S1 to S3) (10). RasGRP1 
KO mice does show mild defects (20%) in thymocyte development 
(38). Notably, RASGRP1 up-regulation in the putamen of dyskinetic 
MPTP-lesioned primate model of PD further strengthens its thera-
peutic relevance in humans. Collectively, our study demonstrates 
that RasGRP1 has a causal role in LID in animal model of PD. Thus, 
drugs blocking RasGRP1, shRNA, or CRISPR-Cas9 approaches to 
reduce RasGRP1 in adults may produce beneficial effects against 
LID without inducing serious adverse effects.

MATERIALS AND METHODS
Reagents, plasmids, and antibodies
Chemicals and reagents were mainly purchased from Sigma-Aldrich. 
His-tagged rat CalDAG-GEFII was a gift from A. Graybiel [Massachusetts 
Institute of Technology (MIT)]. The myc-tagged RasGRP1 (pCMV-
myc) and GST-tagged (pGEX-6P2) constructs were produced as 
described (10). Rheb GTPase was from Prospec (95% purity). The 
scrambled shRNA lentiviral control vector was from Addgene, and 
RasGRP1 shRNA was from Sigma-Aldrich (TRCN0000048268-72). 
Antibodies for RasGRP1 (1:1000; no. sc-8430), -actin (1:20,000; no. 
sc-47778), GFAP (1:1000; no. sc-33673), glyceraldehyde-3-phosphate 
dehydrogenase (Gapdh) (1:1000; no. sc-32233), GST–horseradish 
peroxidase (HRP) (1:5000; no. sc-138), and Myc (1:3000; no. sc-40) 
were obtained from Santa Cruz Biotechnology. Antibodies against 
mTOR (1:4000; no. 2983), pmTOR S2481 (1:2000; no. 2974), pS6K 
T389 (1:1000; no. 9234), pS6 S235/236 (1:3000; no. 4858), p4EBP1 
S65 (1:1000; no. 9451), p4EBP1 T37/46 (1:2000; no. 2855), pAkt S473 
(1:5000; no. 4060), pAkt T308 (1:3000; no. 13038), p44/42 ERK1/2 
(1:10,000; no. 9101), S6K (1:3000; no. 9202), S6 (1:15,000; no. 2217), 
4EBP1 (1:15,000; no. 9644), Akt (1:15,000; no. 4691), ERK1/2 
(1:30,000; no. 4695), Rheb (1:10,000; no. 13879), pGluR1 S845 
(1:1000; no. 8084), total GluR1 (1:2000; no. 13185), and DARPP-32 
(1:30,000; no. 2306) were from Cell Signaling Technology Inc. Htt 
(1:3000; no. MAB2166), TH (1:20,000; no. MAB318), and Gad65/67 
(1:1000; no. ABN904) antibodies were from MilliporeSigma. Anti-
bodies for GAD1 (1:1000; no. 10408), GAD2 (1:1000; no. 21760), 
PDE1C (1:1000; no. 13785), and PDE2A (1:1000; no. 55306) were 
from Proteintech. Rhes antibody (1:1000; no. RHES-101AP) was from 
FabGennix. RasGRP1 antibody for monkey tissue was from Millipore 
(1:1000; no. MABS146). HRP-conjugated secondary antibodies 

[1:10,000; no. 115-035-146 (goat anti-mouse) or 1:10,000; no. 111-035-144 
(goat anti-rabbit)] were from Jackson ImmunoResearch Inc. Glutathione 
beads were from Amersham Biosciences, and protein G/protein A 
agarose beads were obtained from Santa Cruz Biotechnology. Rapamycin, 
U0126, and wortmannin were from Selleck Chemicals.

Animals
B6.129P3-Rasgrp1tm1Jstn/TbwnJ mice (stock no. 022353) and C57BL/6J 
mice (stock no. 000664) were obtained from the Jackson laboratory 
and maintained in our Scripps animal facility according to Institu-
tional Animal Care and Use Committee (IACUC) instructions.

6-OHDA lesioning
Surgical procedures for unilateral 6-OHDA lesioning were performed 
as previously described (4). Briefly, 3- to 4-month-old male mice 
were used for the study, because male mice provided more robust 
and reliable results compared with female. Mice were deeply anes-
thetized by administration of isoflurane. The anesthetized animal 
was then mounted on a stereotaxic frame (David Kopf Instruments, 
Tujanga, CA) equipped with a mouse adaptor. 6-OHDA–HCl 
(Sigma-Aldrich, St Louis, MO) was dissolved in 0.02% ascorbic acid 
in saline at a final concentration of 2 g of free-base 6-OHDA per l. 
Each mouse received four injections of 6-OHDA (1 l per injection) 
into the right striatum, according to the following coordinates (milli-
meter): anteroposterior (AP), +1.1; mediolateral (ML), −2; dorso-
ventral (DV), −3 and −4 and AP, +0.1; ML, −2.3; DV, −3.3 and −4.3. 
Animals were allowed to recover for 3 weeks before behavioral 
evaluations, and l-DOPA treatments were carried out. The efficacy 
of the lesion was assessed by the loss of TH in the lesioned mouse 
striatum (i.e., right) comparing to nonlesioned side (left). Only animals 
displaying ≥60% decrease in striatal TH immunoreactivity were in-
cluded in statistical analyses of the turning test, drag test, open field, 
rotarod, and AIMs.

AIMs rating
AIMs were scored using the rating system described before (4). 
Briefly, 6-OHDA–lesioned (or sham) mice were treated for 17 con-
secutive days with one injection per day of l-DOPA (5 mg/kg) and 
benserazide (14 mg/kg) (4, 12). AIMs were assessed at days 1, 4, 7, 
11, 14, and 17 by two observers who were fully blinded to the mice 
genotypes. On the day of each experiment, mice were habituated in 
single cages for 30 min and then received l-DOPA or vehicle injec-
tion. Twenty minutes after l-DOPA administration, three dyskinetic 
behaviors were assessed for 1-min monitoring period, which 
was repeated every 20 min for 120 min. Involuntary movements, 
distinguished from natural stereotyped behaviors (such as groom-
ing, sniffing, rearing, and gnawing), were classified into three 
subtypes: locomotive AIMs (tight contralateral turns), axial AIMs 
(contralateral dystonic posture of the neck and upper body toward 
the side contralateral to the lesion), and limb AIMs (jerky and 
fluttering movements of the limb contralateral to the side of the 
lesion). Each subtype was scored on a severity scale from 0 to 4 
(0, absent; 1, occasional; 2, frequent; 3, continuous; 4, continuous 
and not interruptible by outer stimuli). Statistical significance over 
days was determined by two-way ANOVA (genotype × days of 
treatment) with repeated measures. Statistical significance for the 
120-min test session of each day was determined by two-way ANOVA 
(genotype × observation periods) with repeated measures, while total 
AIMs were analyzed by post hoc comparison.
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Drag test
Mice were habituated in single cages 30 min before the test. Each 
mouse was held 1 cm from the base of the tail and lifted, forming an 
angle of 45° from the ground, allowing the support of the front limbs 
only. The animal was dragged backward and along a surface of 100-cm 
length at a constant speed of 20 cm/s for five consecutive times 
(each time alternating the direction of dragging). The animal was 
video recorded during the whole time. The number of each front limb 
stepping was counted later by two independent observers watching 
the videos at a slow pace. Drag test was evaluated 5 days before 
l-DOPA administration and days 3 and 16 after l-DOPA treatment 
(1 and 2 hours after injection).

Open field
Open-field test was used to measure the total activity. Briefly, animals 
were placed in the center of each square (50 cm × 50 cm) open top 
box under bright light and recorded via ceiling-mounted video 
camera for 40 min. Locomotor activity was assessed using the 
EthoVision XT 11.5 animal tracking software (Noldus) and showed 
as the total distance traveled in 40 min. Open-field test was made 
4 days before starting the l-DOPA injections and at fifth day of 
l-DOPA treatment. To quantify the locomotor effect of l-DOPA 
injection, recording on fifth day of l-DOPA treatment was started 
after 60 min of the injection.

Turning test
Recording of turning test was made using the open-field boxes. 
Before beginning the test, one bowl (diameter of 20 cm) was posi-
tioned in the center of the box, and then the recording was started 
after one mouse was placed inside the bowl. The number of contra-
lateral or ipsilateral turns to the 6-OHDA lesion was automatically 
detected using the EthoVision XT 11.5 animal tracking software 
(Noldus). Software parameters were adjusted to consider only 360° 
spin as a quantified turn. Contralateral or ipsilateral turns were 
quantified during 40 min and expressed as ratio of total turns (right 
and left turns) as hundred. Turning test was made at 2 days before 
l-DOPA administration and days 12 of l-DOPA treatment (39).

Rotarod
The accelerating rotarod test was used to quantify the motor alter-
ations in WT and RasGRP1 KO mice. After placing the mice on the 
rotating rod (diameter of 5 cm), they were tested using the speed of 
the rotarod accelerated from 4 to 40 rpm for 5-min period, and 
the total time spent on the rod was recorded. To identify that the 
hemi-parkinsonian phenotype, mice were tested on the rotarod 
after 3 weeks of 6-OHDA lesion, the average of three trials was used 
for analysis. Rotarod evaluation during l-DOPA treatment were 

made at day 2 and 15; in each day, mice were tested using one single 
trial at 0, 60, and 120 min after l-DOPA injection. In all the cases, 
animals were not trained before the test.

Immunohistochemistry
Twenty minutes after the last intraperitoneal l-DOPA injection, animals 
were anesthetized with 2% Avertin and transcardially perfused 
with 4% paraformaldehyde (PFA) in phosphate-buffered saline (PBS). 
Mouse brains were postfixed in 4% PFA, incubated in sucrose/PBS 
solution (10 to 30%) at 4°C for 3 days, and embedded in Tissue-Tek 
optimum cutting temperature (OCT) compound (Sakura). Coronal 
sections (25 m) were collected on Superfrost/Plus slides and im-
munostained with the antibodies mentioned in Table 2.

The secondary antibodies were from Thermo Fisher Scientific. 
Immunofluorescent brain sections were counterstained stained with 
DAPI (Sigma-Aldrich) and mounted with Fluoromount-G mounting 
medium (Thermo Fisher Scientific). Images were acquired by using 
the Zeiss LSM 880 confocal microscope system with 10×/63× objective.

Cell culture, transfections, amino acid treatments, 
and RasGRP1 shRNA experiments
HEK293 cells were cultured in growth medium containing Dulbecco’s 
modified Eagle’s medium (DMEM; Thermo Fisher Scientific) with 
10% fetal bovine serum, 1% penicillin-streptomycin, and 5 mM glu-
tamine. Cells seeded in 3.5- or 6-cm plates, after 1 day, were trans-
fected with cDNA constructs using Polyfect (Qiagen) as per the 
manufacturer’s instructions. For the amino acid deprivation protocol, 
after 48 hours, the growth medium was replaced with either serum-
free F12+ (D2906, Sigma-Aldrich) medium or F12− (D9785, 
Sigma-Aldrich; without l-Leucine) medium for 2 hours, and, wherever 
indicated, F12− containing cells were stimulated with leucine (3 mM) 
for 15 min, and cells were lysed to proceed with Western blotting. 
HEK293 cells were seeded in 12-well plates for 1 day and then were 
transfected with RasGRP1 shRNA along with control shRNA con-
structs using Polyfect (Qiagen), according to the manufacturer’s in-
structions. The growth medium was removed after 24 hours, and 
the cells were lysed to prepare for Western blotting. Jurkat cells were 
also cultured similarly.

Western blotting, coimmunoprecipitation,  
and recombinant protein purification
Protocol for Western blotting and coimmunoprecipitation experi-
ments in striatum was described in our previous studies (10). Briefly, 
cells were lysed in lysis buffer [50 mM tris-HCl (pH 7.4), 150 mM NaCl, 
1.0% NP-40, and 10% glycerol] with 1× protease inhibitor cocktail 
(Roche, Sigma-Aldrich) and 1× phosphatase inhibitor (PhosSTOP, 
Roche, Sigma-Aldrich), sonicated three times for 5 s at 20% amplitude, 

Table 2. Antibodies used for immunohistochemistry.  

Primary antibody Source Company Catalog number Dilution Secondary 
antibody

Source 
secondary 
antibody

Dilution 
secondary 
antibody

RasGRP1 Rabbit Santa Cruz 
Biotechnology sc-8430 1:200 Alexa Fluor 488 Donkey 

anti-rabbit 1:500

D1R Rat MilliporeSigma D2944 1:200 Alexa Fluor 594 Donkey anti-rat 1:500

TH Mouse MilliporeSigma MAB318 1:200 Alexa Fluor 488 Donkey 
anti-mouse 1:500
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and cleared by centrifugation for 10 min at 11,000g at 4°C. Protein 
concentration was determined with a bicinchoninic acid (BCA) 
protein assay reagent (Pierce). Equal amounts of protein (30 to 
40 g) were loaded and were separated by electrophoresis in 4 to 
12% bis-tris Gel (Thermo Fisher Scientific), transferred to poly-
vinylidene difluoride membranes, and probed with the indi-
cated antibodies. HRP-conjugated secondary antibodies (Jackson 
ImmunoResearch Inc.) were probed to detect bound primary 
immunoglobulin G [(IgG)] with a chemiluminescence imager (Alpha 
Innotech) using enhanced chemiluminescence from WesternBright 
Quantum (Advansta).

Twenty minutes after the last l-DOPA injection, mice were eutha-
nized by decapitation, and brains were rapidly dissected. Striatum 
tissue was snap-frozen in liquid nitrogen. Tissues were homogenized 
in radioimmunoprecipitation assay (RIPA) buffer [50 mM tris-HCl 
(pH 7.4), 150 mM NaCl, 1.0% Triton X-100, 0.5% sodium deoxy-
cholate, and 0.1% SDS] with 1× complete protease inhibitor cocktail 
and 1× phosphatase inhibitor (PhosSTOP), followed by a brief son-
ication two times for 5 s at 20% amplitude and cleared by centrifu-
gation for 10 min at 11,000g at 4°C. Protein estimation was done 
using a BCA method and proceeded to Western Blotting as 
mentioned above. For coimmunoprecipitation experiment, striatum 
was homogenized in immunoprecipitation (IP) buffer [50 mM 
tris-HCl (pH 7.4), 150 mM NaCl, 10% glycerol, and 1.0% CHAPS 
(3-[(3-Cholamidopropyl) dimethylammonio]-1-propanesulfonate)] 
with protease and phosphatase inhibitors, followed by a brief soni-
cation for 5 s at 20% amplitude, and cleared by centrifugation for 
10 min at 11,000g at 4°C. Protein estimation was done using a BCA 
method, a concentration (1 mg/ml) of protein lysates was precleared 
with 35 l of protein A/G beads for 1 hour, supernatant was incubated 
for 1 hour at 4°C in Rheb IgG or RasGRP1 IgG or control IgG, and 
then 60 l of protein A/G beads was added and incubated overnight 
at 4°C. The beads were washed five times with IP buffer (without 
protease/phosphatase inhibitor), and the protein samples were eluted 
with 30 l of 2× LDS (Lithium dodecyl sulfate) containing 1.5% 
-mercaptoethanol and proceeded for Western blotting as mentioned 
above. Quantitative densitometric measurement of immunoblots was 
performed using ImageJ program [National Institutes of Health 
(NIH)] using actin as a loading control. Phosphorylated proteins 
were then normalized against the total protein levels.

GST-RasGRP1-FL or GST-RasGRP1 GEF domain (1 to 450 amino 
acids; in pGEX-6P2 vector) proteins were expressed as described 
earlier (10). Briefly, an E. coli BL21DE3 strain expressing pGEX-6P2 
constructs was grown in 15-ml culture overnight, was transferred to 
500-ml terrific broth culture, and grown until the log phase was 
reached (~3.5 hours). The cells were then treated with isopropyl--
d-thiogalactopyranoside (500 M) for another 3 hours at 37°C. Cells 
were lysed by sonication in a lysis buffer containing 50 mM tris-HCl 
(pH 8.0), 1 mM dithiothreitol (DTT), 100 mM NaCl, and 1% NP-40 
with protease inhibitor cocktail containing EDTA. The supernatant 
was incubated with glutathione beads for 12 hours at 4°C, and the 
beads were washed three times with a lysis buffer for 30 min. The 
recombinant proteins were eluted after treating the GST-bound beads 
with PreScission protease [10 U] with overnight incubation in 50 mM 
tris-HCl (pH 8.0), 2 mM EDTA, 1 mM DTT, and 1% NP-40. The 
proteins were dialyzed against 20 mM tris-HCl (pH 7.4), 50 mM 
NaCl, 1 mM DTT, and 10% glycerol to remove EDTA and detergent. 
The purified proteins were used immediately or were stored in aliquots 
at −80°C until further use.

In vitro binding
For the in vitro binding assay, an equimolar concentration of re-
combinant purified GST or GST-tagged RasGRP1 (FL or GEF domain) 
were incubated with Rheb for 16 hours at 4°C with glutathione beads 
in binding buffer containing 50 mM tris-HCl (pH 8.2), 1 mM DTT, 
100 mM NaCl, and 1% NP-40, and the Rheb was detected using 
Western blotting with a Rheb antibody, as described earlier (4, 10).

GEF exchange assay
GEF assay was carried out using mant-GTP–based assay (BK100, 
Cytoskeleton) according to the manufacturer’s instructions. Briefly, 
2 l of 15 M Rheb GTPase/Cdc42/Rac was added to 7.5 l of 2× 
exchange reaction buffer [40 mM tris (pH 7.5), 100 mM NaCl, 
20 mM MgCl2, and 1.5 mM mant-GTP] in 384-well plates. Plates 
were then read immediately (excitation, 360 nm; emission, 440 nm) 
in a plate reader (Molecular Devices). After six readings (for a total of 
180 s), 5.5 l of 1.2 M or 5.5 M RasGRP1-FL or 3 l of 2.5 M Dbs 
or dH2O was added to the wells, with an immediate resumption of 
the reading (70 readings for a total of 35 min). Three independent 
assays were performed.

TMT labeling, phosphopeptide enrichment,  
and MS experimental methods
Striatum from WT (n = 3) and RasGRP1 KO (n = 3; see scheme in 
Fig. 5A) mice isolated after l-DOPA treatment was lysed in RIPA 
buffer precipitated with ice-cold acetone overnight, and protein was 
resolubilized with 100 l of 6 M urea/50 mM tris-HCl (pH 8.0). The 
protein was subsequently reduced for 45 min at 55°C using 3 l of 
0.5 M DTT and then alkylated in the dark for 30 min using 6 l of 
0.55 M iodoacetamide. Following reduction and alkylation, protein was 
once again precipitated with ice-cold acetone overnight. The pro-
tein pellet was resolubilized with 150 l of TEAB (triethylammonium 
bicarbonate), and digestion was performed overnight at 37°C with 
6 g of trypsin (Promega). Following the digestion, the peptides were 
quantified using the Pierce quantitative colorimetric peptide assay 
(Thermo Fisher Scientific). One hundred micrograms of peptides 
per sample was subsequently labeled with varying TMT labels accord-
ing to the manufacturer’s instructions (Thermo Fisher Scientific) 
and pooled. The pooled plexed samples (400 g in total) were vacuum-
dried, resolubilized in 1% trifluoroacetic acid, then desalted using 
Oasis HLB 1-cm3 solid phase extraction cartridges (Waters), and then 
dried once again using vacuum. TMT-labeled phosphopeptides for 
MS were enriched using the High-Select Fe–NTA (nitrilotriacetic 
acid) Phosphopeptide Enrichment Kit from the Thermo Fisher Sci-
entific according to the manufacturer’s instructions. The TMT-
labeled nonphoshopeptide complement was cleaned up for MS using 
a C18 ZipTip according to the manufacturer’s instructions (Millipore).

For MS, dried TMT-labeled peptides (phoshopeptides and non-
phosphopeptides) were reconstituted in 5 l of 0.1% formic acid 
and on line eluted into a Fusion Tribrid mass spectrometer (Thermo 
Fisher Scientific) from an Acclaim PepMap RSLC nano Viper ana-
lytical column [75 m (inner diameter) × 15 cm, Thermo Fisher 
Scientific] using a gradient of 5 to 25% solvent B (80:20 acetonitrile/
water and 0.1% formic acid) in 180 min, followed by 25 to 44% sol-
vent B in 60 min, 44 to 80% solvent B in 0.1 min, a 5-min hold of 
80% solvent B, a return to 5% solvent B in 0.1 min, and, last, a 20-min 
hold of solvent B. All flow rates were 300 nl/min delivered using a 
nEasy-LC1000 nano liquid chromatography system (Thermo Fisher 
Scientific). Solvent A consisted of water and 0.1% formic acid. Ions 
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were created at 2.0 kV using the Nanospray Flex ion source (Ther-
mo Fisher Scientific). A synchronous precursor selection (SPS)–MS3 
MS method was used by scanning between 380 to 2000 mass/charge 
ratio (m/z) at a resolution of 120,000 for MS1 in the Orbitrap mass 
analyzer and by performing collision-induced dissociation (CID) at 
top speed in the linear ion trap of peptide monoisotopic ions with 
charges 2 to 8 using a quadrupole isolation of 0.7 m/z and a CID 
energy of 35%. The top 10 MS2 ions in the ion trap between 400 and 
1200 m/z were then chosen for higher-energy collisional dissociation 
(HCD) at 65% energy and detection in the Orbitrap at a resolution of 
60,000 and an automatic gain control (AGC) target of 1 × 105 and an 
injection time of 120 ms (MS3). Data were analyzed as described below.

Proteomic data processing and statistical analysis
Quantitative analysis of the TMT experiments was performed simul-
taneously to protein identification using Proteome Discoverer 2.3 
software. The precursor and fragment ion mass tolerances were set 
to 10 parts per million and 0.2 Da, respectively. Enzyme was Trypsin 
with a maximum of two missed cleavages, and Uniprot Mouse pro-
teome FASTA file was used in SEQUEST searches. The impurity 
correction factors obtained from the Thermo Fisher Scientific for 
each kit was included in the search and quantification. The following 
settings were used to search the phospho enriched data and dynamic 
modifications: Oxidation, +15.995 Da (M); deamidated, +0.984 Da 
(N, Q); phospho, +79.966 Da (S, T, Y); static modifications of TMT 6plex, 
+229.163 Da (N terminus, K); and carbamidomethyl, +57.021 (C). 
Only unique+ Razor peptides were considered for quantification 
purposes. Percolator feature of Proteome Discoverer 2.3 was used 
to set an FDR of 0.01. The IMP–ptmRS node was used to calculate 
probability values for each putative phosphorylation site. Total pep-
tide abundance normalization method was used to adjust for load-
ing bias, and protein abundance–based method was used to calculate 
the protein level ratios. Coisolation threshold and SPS Mass Matches 
threshold were set to 50 and 65, respectively. After natural log (In) 
transformation of the raw ion counts, each channel was divided with 
reference sample (WT intact). The resulting list of proteins was 
further filtered by removing proteins that were not quantified in 
all plexes. Proteins passing this cut-off value were exported to JMP 
(SAS) 13.2.1 software for data cleaning and statistical analysis. The 
nonenriched (also known as total) dataset was analyzed in the same 
fashion except for omission phosphorylation in SEQUEST search and 
phosphoRS node in Proteome Discoverer workflow.

Proteins (including the ones identified by a single peptide) were 
only included in subsequent analyses if they met the following re-
quirement: The peptides must be quantified in all samples of a given 
treatment group. Last, we used one-way ANOVA where category 
was fixed effect to identify proteins that are regulated across com-
parison groups (category). The multiple testing correction as per 
Benjamini Hochberg was applied to identify a “top tier” of significant 
proteins and limit identification of false positives with an FDR of 
10%. P < 0.1 was considered statistically significant. The significantly 
regulated proteins were further interrogated to identify the different 
treatment group by using Tukey’s HCD.

Nonhuman primate studies
Captive bred female macaques (Macaca mulatta, Xierxin, Beijing, 
Peoples Republic of China; mean age = 5 ± 1 years; mean weight = 
5.3 ± 0.8 kg) were housed in individual primate cages under controlled 
conditions of humidity (50 ± 5%), temperature (24° ± 1°C), and 

light (12-hour light/12-hour dark cycles; time lights on, 8:00 a.m.), 
allowing visual contacts and interaction with macaques housed in 
the adjacent cages. Food and water were available ad libitum, and 
animal care was supervised daily by veterinarians skilled in the 
healthcare and maintenance of nonhuman primates. Experiments 
were carried out in accordance with European Communities Council 
Directive (2010/63/EU) for care of laboratory animals in an AAALAC 
(Association for Assessment and Accreditation of Laboratory Animal 
Care)–accredited facility following the acceptance of study design 
by the Institute of Lab Animal Science IACUC (Chinese Academy of 
Medical Sciences, Beijing, China). The tissues used in the present 
work have been obtained from an experimental brain bank used 
in several occasions whose experimental conditions are described 
elsewhere in great details (40). As shown in Fig. 6D, MPTP-treated non-
human primate PD model macaques (n = 10) received daily MPTP 
hydrochloride injections [0.2 mg/kg, intravenous (i.v.)] until par-
kinsonian signs appeared. Once PD motor signs were stable, some 
of the animals (n = 5) were treated twice daily with an individually 
titrated dose of l-DOPA that provided maximum reversal of par-
kinsonian motor signs (Madopar, l-DOPA/carbidopa, 4:1 ratio; range, 
9 to 17 mg/kg). This dose of l-DOPA, defined as 100% dose, was 
used for chronic l-DOPA treatment, which lasted for 4 to 5 months 
until dyskinesia stabilized. Animals then received l-DOPA twice a 
week to maintain a consistent level of dyskinesia before acute drug 
tests were carried out using a within subject experimental design. 
At the end of the experiment, all animals were killed by sodium pen-
tobarbital overdose (150 mg/kg, i.v.) 1 hour after the last dose of 
vehicle or L-DOPA (i.e., at peak of antiparkinsonian effect), and the 
brains were removed quickly after death. Each brain was bisected 
along the midline, and the two hemispheres were immediately frozen 
by immersion in isopentane (−45°C) and then stored at −80°C. 
Punches of brain tissue were taken for the following regions: putamen 
and MFG. An average sample size of 6 ± 2 mg was obtained.

Western blotting analysis of monkey brain tissues
Preparation and immunoblotting were performed as previously de-
scribed (40). Frozen, powdered samples from postmortem monkey 
brains were sonicated in 1% SDS and boiled for 10 min. Aliquots 
(1 l) of the homogenate were used for the protein determination 
by a Bio-Rad Protein Assay kit (Bio-Rad). Equal amounts of total pro-
teins (30 g) for each sample were loaded on precast 4 to 20% gradient 
gel (Bio-Rad). Proteins were separated by SDS–polyacrylamide 
gel electrophoresis and transferred to polyvinylidene difluoride 
membranes through Trans-Blot Turbo System. Membranes were 
then immunoblotted overnight using the following primary antibody: 
anti-RasGRP1 (1:1000; no. MABS146), anti-GFAP (1:1000; no. 
sc-33673), anti-PDE2A (1:1000; no. 55306-1-AP), anti-GAD1/2 
(1:1000; no. ABN904), and anti-TH (1:2000; no. MAB318). Blots 
were then incubated in horseradish peroxidase–conjugated secondary 
antibodies. Immunoreactivity was detected by enhanced chemilu-
minescence (GE Healthcare) and quantified by Quantity One soft-
ware (Bio-Rad). Optical density values were normalized to GAPDH 
(1:1000; no. SC-32233) for variation in loading and transfer. Normal-
ized values were then averaged and used as dependent variable. 
Statistical analysis was performed by using Mann-Whitney test.

Quantitative real-time polymerase chain reaction analysis
Total RNAs were extracted using TRIzol reagent (Thermo Fisher 
Scientific), according to the manufacturer’s instructions. Total RNA 
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was purified to eliminate potentially contaminating genomic DNA 
by a recombinant deoxyribonuclease. A 0.2 g of total RNA per sample 
was used to synthesize cDNA by the QuantiTect Reverse Transcrip-
tion Kit (Qiagen). Quantitative real-time polymerase chain reaction 
(PCR) amplifications were performed with LightCycler 480 SYBR 
Green I Master (Roche Diagnostic) in a LightCycler 480 real-time 
thermocycler (Roche). The following protocol was used: 10 s for 
initial denaturation at 95°C followed by 40 cycles consisting of 10 s 
at 94°C for denaturation, 10 s at 65°C for annealing, and 6 s for 
elongation at 72°C temperature. RasGRP1 cDNA was amplified with 
following primers: RasGRP1 (forward, ACCCAGTTCCGAATGAT-
GGT) and RasGRP1 (reverse, GACACAGGTTTCCATCCGCA). 
Transcripts quantities were normalized by the geometric mean of 
the two housekeeping genes, -actin (Actin Beta, ACTB) and cyclo-
philin A (Peptidylprolyl isomerase A, PPIA), which were amplified 
using the following primers: ACTB (forward, CTGTGCTATGTCG-
CCCTAGA; reverse, GGAAGGTTGGAAGAGAGCCT) and PPIA 
(forward, TGCTGGACCCAACACAAATG; reverse, GTCCACAGT-
CAGCAATGGTG. All measurements from each participant were 
performed in duplicate. mRNA expression was calculated by using 
the relative quantification method (2−Ct). Statistical analyses 
were performed with Mann Whitney test.

Statistical analysis
Data were expressed as means ± SEM as indicated. All experiments 
were performed at least in biological triplicate and repeated at least 
twice. Statistical analysis was performed with a Student’s t test or 
repeated measure two-way ANOVA followed by post hoc Bonferroni 
multiple comparison test or one-way ANOVA followed by Tukey’s 
multiple comparison test (GraphPad Prism 7) as indicated in the 
figure legends.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/18/eaaz7001/DC1

View/request a protocol for this paper from Bio-protocol.
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